fbpx

As DDT, DDE, DDD, methoxychlor, endosulfan sulfate, and endrin appear to be readily excreted into sweat, induced perspiration appears to be a potential clinical tool to diminish the body burden of these agents. With the exception of DDE, however, these agents are not readily detected in blood testing. This suggests that common blood analysis may not truly represent the body burden of these compounds. As the routine use of unprovoked blood testing may thus be inadequate for biomonitoring body burdens of OCPs, there may be clinical advantages to the induction of perspiration through methods like sauna and/or exercise in order to collect samples for biomonitoring and diagnosis of many retained OCP compounds.

In conclusion, the previous four papers in this “blood, urine, and sweat (BUS)” series have demonstrated that induced perspiration is effective at facilitating the removal of many toxic elements as well as various organic compounds, but not all [59–62]. This OCP study provides evidence that transdermal depuration through perspiration facilitates elimination of some parent and metabolite OCP compounds, but not all. While the absolute amount of each OCP compound released into sweat may be small according to this data, an average adult may sweat more than one liter per hour during exercise. Under thermal stress, maximal rates of sweating may be as high as two to four liters/hour [63]; and sweating rates for “acclimatized” people who regularly use saunas may be as high as two liters/hour [64]. Accordingly, regular sessions of induced perspiration should be considered cumulatively as a potential clinical modality to diminish body burdens of many xenobiotics, including OCP compounds.

Source: https://doi.org/10.1155/2016/1624643

Share this post: